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Preview control with an estimation scheme is investigated for an active vehicle
suspension system with look-ahead sensors. Design of a preview compensator that
may be called stochastic optimal, output feedback, preview regulator problem is
reduced to the classical linear quadratic Gaussian problem by augmenting
dynamics of the original system and previewed road inputs. The resulting solution
is a combination of deterministic optimal preview controller and stochastic
optimal estimator. The optimal estimator takes the form of a Kalman filter with
an additional term of the estimate for the road input, which is given as the
weighted preview sensor signal. The Kalman filter gain and the weight used for
estimating state and road input, respectively, are designed so that performance
degradation by measurement noise is minimized. Numerical examples of a quarter
car model are given to verify the performance improvement achievable with the
proposed preview control when the estimation from noisy measurement is
considered.
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1. INTRODUCTION

It is well-known that compromise between ride comfort and handling performance
has to be made to design a passive suspension of a vehicle. To overcome this
problem, many researchers have proposed to use active suspensions. Unlike
passive systems which can only store or dissipate energy, active suspensions can
continuously change the energy flow to or from the system when required.
Furthermore, characteristics of active suspensions can adapt to instantaneous
changes in driving conditions detected by sensors. As a result, active suspensions
can improve both ride comfort and handling performance to satisfactory levels.

It has been first proposed by Bender [1] that performance of active suspension
can be further improved if knowledge of the road surface in front of the actively
controlled axles, i.e., preview information is used in the control strategy. With
preview information, one can, for example, prepare the vehicle for a future road
input and pass through abrupt road obstacles without severe impacts.

There are two possible ways to obtain preview information. One is to use a
‘‘look-ahead’’ sensor and the other is to estimate road profile from the response
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of the front wheel by assuming that road inputs at the rear wheels are the same
as those at the front wheels except for time delays. In this paper, the look-ahead
preview control will be considered.

In vehicle suspension control, one cannot measure all the state variables for
practical reasons and therefore, information on them is incomplete. All the
measurement signals including the preview sensor signal, are assumed to be
contaminated by sensor noises. To realize preview control in the vehicle
suspension, one needs an optimal filter which will filter out the sensor noises from
the preview sensor signals as well as a state estimator which will minimize
estimation errors due to sensor noises. Thus, to obtain an optimal preview
controller for a system with incomplete and noisy measurements one needs to solve
a stochastic optimal preview regulator problem with incomplete and noisy
measurements, or simply the stochastic optimal, output feedback, preview
regulator problem.

Yoshimura and Edokoro [2] changed the problem into the LQG form by
augmenting the dynamics of the original system and the road inputs. In their
formulation the correlation between the road inputs is considered only in the
estimation scheme but not in the control scheme. Their controller does not utilize
the preview information estimated in the previous steps, which is said to be
characteristic of preview control. Hac [3] also solved the problem by the
variational approach. He derived the optimal control and estimation schemes
independently and then showed that a separation principle is satisfied with his
solution to prove its optimality. However, he did not consider the optimal
estimation of the road input from preview sensor signals; rather, he used the
delayed raw preview sensor signals as the estimated road input. Therefore, his
solution is not optimal if the preview sensor signal is corrupted by measurement
noise.

Louam et al. [4] derived the optimal preview regulator assuming availability
of exact information on the state and the road inputs. They transformed the
preview regulator problem into the LQR problem by introducing a state vector,
whose dynamics is a combination of those of the original system and previewed
road input. The resulting control input was given as the feedback input driven
by the augmented state vector, which is different from the structure of
the conventional preview controller consisting of feedback and feedforward
parts.

In this paper, the solution for the stochastic optimal, output feedback, preview
regulator problem is derived assuming incomplete and noisy measurements of the
states and the road input. The problem based on the LQG framework is solved
by augmenting dynamics of previewed road input with the original system
dynamics. The resulting compensator is divided into the controller and the
estimator part. While the controller is identical to the Louam’s work, the estimator
is unique in its optimality under the noisy measurement condition. The proposed
compensator has high order dynamics compared with the original system, which
makes it impractical to implement in real applications. The compensator structure
is transformed into a combination of the feedback part with the same order of the
original system and the feedforward part based on the measured road inputs only.
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This novel transformation shows a relation between the conventional preview
control and the present result explicitly.

The contents of the paper will be organized as follows: in the next section, an
active suspension design of a quarter car into a discrete time, stochastic optimal,
output feedback, preview regulator problem. In section 3, an augmented state
vector is introduced to transform the problem into a well known LQG problem
and then its optimal solution is derived. Numerical examples are given to verify
performance of the resulting suspension in section 4. Finally in section 5,
conclusions are drawn.

2. PROBLEM FORMULATION

2.1.  

A two-degrees-of-freedom vehicle model considered in this paper is shown in
Figure 1. Assuming that the characteristics of all passive suspension elements are
linear, the model can be described by the following equations of motion:

msz̈s = f, muz̈u =−f− kt (zu − z0), (1, 2)

where f denotes the upward suspension force, which is given by

f= u− ks (zs − zu )− b(żs − żu ). (3)

When the following state and disturbance vectors are introduced,
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where

x1 = zs − zu , x2 = zu − z0, x3 = żs , x4 = żu ,

Figure 1. A quarter car model with active suspension.
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equations (1) and (2) can be written as:

ẋ=Ax+Bu+Ew, (4)

where
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Note that the rate of change in the road profile is an external disturbance in this
model. This road input depends on two factors; (a) road roughness which is a
function of the road roughness parameter Gr , and (b) vehicle velocity v. [5]
Statistical properties of the road input are defined as

E[w(t)]=0, cov [w(t1), w(t2)]=W	 d(t1 − t2)= pRrd(t1 − t2), (5)

where E[·] is the mean value of [·], cov [x1, x2] is the covariance of x1 and x2, d(·)
the Dirac delta function and Rr (=2pGrv) is the road roughness parameter.

Relative displacement of the suspension and the sprung mass acceleration are
assumed to be measured by a relative displacement sensor and an accelerometer
under the noisy environments as follows:

y1 = zs − zu + e1, y2 = z̈s + e2, (6)

where eis (i=1, 2) are measurement noises existing in the corresponding
measurements yi . Using the notations defined above, equation (6) can be expressed
in terms of state, input and measurement noise vectors as follows:

y(t)=Cx+Du+ e, (7)

where

y(t)=6y1(t)
y2(t)7, e(t)=6e1(t)

e2(t)7, C=$ 1
−ks /ms

0
0

0
−b/ms

0
b/ms%,

D=$ 0
1/ms%.
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One further assumes that the rate of change in the road profile is measured by a
preview sensor with a preview distance of Lp ,

yw (t)=w(t+Tp )+ ew (t+Tp ), (8)

where ew is a measurement noise for the preview sensor and Tp (=Lp /v) is a preview
time. For a fixed preview distance, a preview time decreases with an increasing
vehicle speed.

The measurement noises e and ew are assumed to be uncorrelated with the road
input, w(t),

cov [e(t1)w(t2)]= 0, cov [ew (t1)w(t2)]=0. (9)

Finally, the initial state x(0) and measurement noises e and ew are assumed to
satisfy the following conditions:

E[x(0)]= x̄0; cov [x(0), x(0)]=P	 0 e 0,

E[e(t)]= 0; cov [e(t1), e(t2)]=J	 (t1)d(t1 − t2)q 0,

E[ew (t)]=0; cov [ew (t1), ew (t2)]=J	 w (t1)d(t1 − t2)q 0, (10)

2.2.     

The purpose of the active suspension is to reduce the required suspension
working space and the maximum acceleration of the sprung mass, without
increasing the dynamic tire force variation too much. Finally, for practical reasons,
the magnitude of control force, u, is limited. These objectives can be achieved by
finding the optimal input u that minimizes the following performance index:

J= 1
2E$g

Tf

0

{r1z̈2
s + r2(zs − zu )2 + r3(zu − z0)2 + r4u2} dt%, (11)

where ris (i=1, . . . , 4) are weighting constants determined by designers. By
expressing the sprung mass acceleration and the suspension deflection in terms of
state, input and disturbance vectors, the performance index is written as the
following quadratic form:

J= 1
2E$g

Tf

0

{xTQ1x+2xTNu+ uTR	 u+2xTQ12w+wTQ2w} dt

+ xT(Tf )S1x(Tf )+2xT(Tf )S12w(Tf )+wT(Tf )S2w(Tf )%, (12)

where

$Q1

QT
12

Q12

Q2 %e 0, $S1

ST
12

S12

S2 %e 0,

$Q1

QT
12

Q12

Q2 %−$N0%R	 −1[NT 0]e 0, R	 q 0. (13)
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2.3. 

In this paper, a discrete time domain approach is employed. Thus, all the
relevant equations and the performance index are converted into discrete
equivalents. With a sampling time Ts , the discrete time representation of state and
measurement equations (4), (7) and (8) will take the following form:

x(k+1)=Gx(k)+Hu(k)+Fw(k), y(k)=Cx(k)+Du(k)+ e(k),

yw (k)=w(k+Np )+ ew (k+Np ), (14)

where G, H, F are the discrete equivalents of A, B, E and Np =Tp /Ts . Discrete
equivalents of the statistical properties of the system in equations (5), (9) and (10)
are given as

E[w(k)]=0; cov [w(k1), w(k2)]=W(k1)d(k1 − k2),

cov [e(k1)w(k2)]= 0, cov [ew (k1)w(k2)]=0,

E[x(0)]= x̄0; cov [x(0), x(0)]=P0,

E[e(0)]= 0; cov [e(k1), e(k2)]=J(k1)d(k1 − k2),

E[ew (0)]=0; cov [ew (k1), ew (k2)]=Jw (k1)d(k1 − k2). (15)

where W(k)1W	 (t)/Ts , J(k)=J	 (t)/Ts , Jw (k)=J	 w (t)/Ts . Approximation made
in obtaining discrete equivalents of the covariance matrix of the external
disturbance is valid only when Ts is much smaller than the dominant time constant
of the system. [6] Finally, performance index (12) can be transformed into the
following discrete equivalent by using the discretization method given in [6].

J= 1
2E$0x(n)

w(n)1
T

$Sxx (n)
ST

xw(n)
Sxw (n)
Sww (n)%0x(n)

w(n)1
+ s

n−1

i=0 60x(i)
w(i)1

T

$Qxx

QT
xw

Qxw

Qww%0x(i)
w(i)1+20x(i)

w(i)1
T

$Mx

Mw%u(i)+ uT(i)Ru(i)7%,
(16)

where

S=$Sxx (n)
ST

xw(n)
Sxw (n)
Sww (n)%e 0, Q=$Qxx

QT
xw

Qxw

Qww%e 0,

Q−$Mx

Mw%R−1[MT
x MT

w ]e 0; Rq 0, n=Tf /Ts . (17)
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3. STOCHASTIC PREVIEW OPTIMAL OUTPUT FEEDBACK
REGULATOR PROBLEM

Consider the following augmented state and output vectors
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g
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Then, state and measurement equations will be changed as

xa (k+1)=Gaxa (k)+Hau(k)+wa (k), ya (k)=Caxa (k)+Hau(k)+ ea (k),

(19)

where
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0
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0

0
0

· · ·
· · ·

0
1%, Da =$D0%, ea (k)=6 e(k)

ew (k+Np )7. (20)

The initial condition (xa )0 and noise vectors wa , ea of the augmented system satisfy
the following conditions:
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cov [wa (k1), wa (k2)]=Wa (k1)d(k1 − k2)=

0 0 0 · · · 0

0 0 0 · · · 0
···

· · ·
··· d(k1 − k2)e 0,G

G

G

G

G

K

k

G
G

G

G

G

L

l
0 0

0 0 0 · · · W(k1 +Np +1)

cov [ea (k1), ea (k2)]=Ja (k1)d(k1 − k2)=$J(k1)
0

0
Jw (k1)%d(k1 − k2)q 0. (21)

The performance index in equation (16) is expressed in terms of the augmented
state vector

J= 1
2E$xT

a (n)Sa (n)xa (n)

+ s
n−1

i=0

{xT
a (i)Qaxa (i)+2xT

a (i)Mau(i)+ uT(i)Ru(i)}%, (22)

where
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ST
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···
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Ma = ···
, Qa −MaR−1MT

a e 0. (23)

0

One notes that by using the augmented state vector, the stochastic preview
optimal output feedback regulator problem reduces to a classical LQG problem.
It may be easily proved that the separation principle holds for the LQG problem
and that its solution is the combination of a deterministic optimal state feedback
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regulator and a stochastic optimal estimator. [7] The optimal solution to the LQG
problem is reproduced in Theorem 1 in Appendix A.

The optimal input given in equation (A.1) is in the form of an augmented state
feedback input. It may seem to contradict the previous research results [1, 3, 9, 10],
since the preview information does not make up the feedforward part in the
proposed optimal input. In addition, the optimal input requires solutions of
Riccati equations whose dimensions are much larger than the original system
order. These contradictions can be resolved if one changes the solution in Theorem
1 into more convenient form, using notations in equations (18), (20) and (21).

Corollary 1. Considering notations in equations (18), (20) and (21), the optimal
input in Theorem 1 reduces to the following form:

u*(k)=−{R+HT(Pc )xx (k+1)H}−1[(HT(Pc )xx (k+1)G+MT
x )x̂(k)

+ (HT(Pc )xx (k+1)F+MT
w)ŵ(k)+HTr̂(k+1)], (24)

where

(Pc )xx (k)=G
 T(Pc )xx (k+1)G
 +Q
 xx

− G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)H}−1HT(Pc )xx (k+1)G
 , (25)

r̂(k)=G
 T[I−(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)H}−1HT]r̂(k+1)

+ [G
 T(Pc )xx (k+1)F
 +Q
 xw −G
 T(Pc )xx (k+1)H

× {R+HT(Pc )xx (k+1)H}−1HT(Pc )xx (k+1)F
 ]ŵ(k), (26)

G
 =G−HR−1MT
x , Q
 xx =Qxx −MxR−1MT

x , F
 =F−HR−1MT
w ,

Q
 xw =Qxw −MxR−1MT
w, (Pc )xx (n)=Sxx (n), r̂(k+Np +1)= 0. (27)

Estimates for state and preview information, x̂(k) and ŵ(k+ j) ( j=0, . . . , Np )
are obtained from the outputs of the estimators whose structures are given as

x̂(k+1)=Gx̂(k)+Hu(k)+Fŵ(k)

+ G(Pe )xx (k)CT[C(Pe )xx (k)CT +J(k)]−1{y(k)−Cx̂(k)−Du(k)},
(28)

ŵ(k+ j)=W(k+ j)[W(k+ j)+Jw (k+ j)]−1yw (k+ j−Np ), (29)

where

(Pe )xx (k+1)=G(Pe )xx (k)GT +F[W(k)−W(k){W(k)+Jw (k)}−1W(k)]FT

− G(Pe )xx (k)CT[C(Pe )xx (k)CT +J(k)]−1C(Pe )xx (k)GT, (30)

x̂(0)= x̄0, ŵ(0+ j)=W( j)[W( j)+Jw ( j)]−1yw ( j−Np ), (Pe )xx (0)=P0.
q
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Proof. Details of proof are given in Appendix B.
The optimal solution in corollary 1 can be divided into 2 parts: control scheme

and estimation scheme. As for control scheme, one finds from equation (24) that
the optimal input does consist of a feedback and a feedforward part. The feedback
input is exactly the same as the classical LQR input, and the feedforward input,
made of available preview information, provides an anticipative action based on
the predicted system response to the future road input. And one also notes that
all the relevant equations have dimensions equal to the original system order. In
fact, equations (24)–(26) are the discrete equivalents of Hac’s results which is based
on a variational approach. [3]

The estimation scheme consists of state and preview estimation parts. The
estimator for the state variables in equation (28) have the same structure as the
conventional Kalman–Bucy filter except for an additional term of the estimated
road input. One notes in equation (29) that the estimate for preview information
is given in the form of weighted preview sensor signal whose weighting is
determined from statistical properties of the road input and the preview sensor
noise. When the preview sensor noise is equal to zero, the estimate for the road
input reduces to Hac’s result which directly used the measured preview signal as
the estimate of the road input. [3] It means that preview sensor signal will be totally
trusted and used for the control scheme. As the covariance of the preview sensor
noise becomes larger, the preview sensor signal will also contain erroneous
information along with real road information. Compared with Hac’s, the
proposed estimator filters out the noise component of the preview sensor signal
and improves control performance significantly.

Infinite time results (n:a). Suppose all related parameters are time invariant,
and n approaches infinity. In this case the performance index (22) may keep
growing as n increases. So instead of J, its rate J'= J/n is considered as a
performance index. When n is finite, the optimal input which minimizes J also
minimizes J'. It is assumed that (G, H) and (G, F) are stabilizable, and that
(G, Q
 1/2

xx ) and (G, C) are detectable.

Corollary 2. The optimal input that minimizes J'a =lim
n:a

J/n is given by

u*(k)=−{R+HT(Pc )a
xxH}−1[(HT(Pc )a

xxG+MT
x )x̂(k)

+ (HT(Pc )a
xxF+MT

w)ŵ(k)+HTr̂(k+1)], (31)

where (Pc )a
xx is the steady state solution of equation (25) and

r̂(k)=G
 T[I−(Pc )a
xxH{R+HT(Pc )a

xxH}−1HT]r̂(k+1)

+ [G
 T(Pc )a
xxF
 +Q
 xw −G
 T(Pc )a

xxH{R+HT(Pc )a
xxH}−1HT(Pc )a

xxF
 ]ŵ(k), (32)

with initial condition r̂(k+Np +1)= 0.
Estimates for x̂(k) and ŵ(k+ j) ( j=0, . . . , Np ) are obtained as:

x̂(k+1)=Gx̂(k)+Hu(k)+Fŵ(k)

+G(Pe )a
xxCT[C(Pe )a

xxCT +J]−1(y−Cx̂(k)−Du(k)), (33)
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ŵ(k+ j)=W[W+Jw ]−1yw (k+ j−Np ), (34)

where (Pe )a
xx is the steady state solution of equation (30) and

x̂(0)= x̄0, ŵ(0+ j)=W[W+Jw ]−1yw (j−Np ).

Finally, the optimal performance index rate, J'a is given as

J'a =lim
n:a

J/n= tr[Pa
c Wa ]+ tr[Pa

e (Ka
c )T[HT

a Pa
c Ha +R]Ka

c ]

= tr[(Pc )a
wwW]+ tr[(Pe )a

xx(HT(Pc )a
xxG+MT

x )T(HT(Pc )a
xxH+R)− 1

(HT(Pc )a
xxG+MT

x )]

+ tr[(Pe )a
ww(HT(Pc )a

xxF+MT
w)T(HT(Pc )a

xxH+R)−1(HT(Pc )a
xxF+MT

w)]

+ s
Np

j=1

tr[(Pe )a
ww((Pc )a

xwj
)TH(HT(Pc )a

xxH+R)−1HT(Pc )a
xwj

], (35)

where (Pc )a
xwj

is the steady state solution of (A.12). q
When deriving the optimal solution, the specific value for the vehicle speed was

assumed. Because a vehicle is supposed to operate under a wide range of speeds,
it is important to know how the vehicle speed affects control and estimation
schemes. Depending on the speed, the following two parameters will change: one
is the covariance of road input W(k) and the other is preview step Np . The
covariance W(k) is proportional to vehicle speed and is related to the signal to
noise ratio of the preview sensor. As W(k) increases, the preview sensor signal
is more trusted as seen in equation (29). And the state estimator will trust
system modeling more than the remaining sensor signals in equation (30)
because modelling uncertainty due to road input estimation error
F[W(k)−W(k){W(k)+Jw (k)}−1W(k)]FT reduces with increase of W(k).

The preview step Np is inversely proportional to vehicle speed. By the initial
condition r̂(k+Np +1)=0, it determines the amount of road information to be
used in feedforward control action. As vehicle speed increases, Np decreases and
so does the number of iterating equation (26) to get r̂(k+1) from its initial
condition.

In summary, if the vehicle speed varies, one needs to modify the structures of
both the controller and the estimator. In order to implement preview control in
real applications the scheduling technique to deal with these changes will be
required.

4. NUMERICAL EXAMPLES

In this section, the results of the previous section are applied to the vehicle
suspension described in section 2. The parameter values used in simulation are
given as ms =250 kg, mu =30 kg, ks =10 000 N/m, ku =100 000 N/m,
b=1000 Ns/m. They correspond to a compact sedan. [3] For road roughness
parameter Gr , a characteristic value Gr =5·0× e−6 m cycle for a paved road will
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Figure 2. Optimal J'inf for a varying preview distance, Lp . Key: —r—, state feedback preview;
—q—, output feedback preview.

be used. [5] A vehicle is assumed to be running straight ahead with a speed, 15 m/s
(=54 km/h). Sampling time is set to 10 ms, considering that all the modal
frequencies of the system is less than 10 Hz.

For the performance index defined in equation (11), the following weighting
factors were used: r1 =300, r2 =2, r3 =2, r4 =1·0e−4. It corresponds to the
controller design whose main objective is to improve ride comfort. As for
measurement variables, one assumes that the acceleration of the sprung mass and
the suspension deflection are available. A preview sensor is assumed to measure
the road input, 2·0 m ahead of the vehicle. Covariance matrices of measurement
noises are given as

J	 (t)= m$4·76e−4

0
0

2·50 · e−1%, J	 w (t)= (5·06e−4)mw ,

which are selected so that signal to noise ratios become 5 dB when m and mw are
equal to 1. Based on the parameters given above, a steady state, stochastic optimal,
output feedback, preview regulator has been designed.

In Figure 2, the effect of a preview distance on performance of optimal preview
controller is shown. The steady state, optimal performance index rate for an
output feedback optimal preview controller is plotted with respect to the preview
distance when m and mw are equal to 1. For comparison purposes, the results for
the case when complete and noise-free state and preview information are available,
i.e., a state and preview feedback optimal preview controller are also included.
Both of them are normalized by the performance index rate achievable with the
passive suspension. By comparing two rates, one can observe performance
deterioration due to measurement noises. As the preview distance increases,
performance of both controllers improves. But when the preview distance is larger
than 4·0 m, the performance improves very slowly and the optimal rates converge
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to certain values. As expected, the performance of output feedback optimal
preview controller is worse than that of the state and preview feedback controllers
due to estimation errors. One notes that the difference in performance of the two
control schemes becomes more evident for a longer preview distance.

Figure 3 shows the influence of the covariance of preview sensor noise on the
steady state performance of the output feedback optimal preview controller. In
equation (29), an increase of the sensor noise covariance results in a decrease of
the estimator gain by which the preview sensor signal is multiplied in its estimation
procedure. With a decreasing gain, estimates for preview information will also
decrease, which, in turns, make the feedforward part of the optimal input small
for a given controller gain. In Figure 3 one finds that as mw increases from 0·01
to 100, the optimal performance index rate of the preview controller approaches
that of the LQG controller which does not use preview information in control
strategy. It means that if the preview sensor signal is too noisy, the feedforward
part of preview control will have no effect and therefore, its feedback part will
work just as the LQG controller.

By assuming that a preview controller has already been designed to optimize
the performance index rate for a specific speed, 15 m/s, one can investigate how
it will work when the actual speed of the vehicle is different from the nominal
speed. In Figure 4(a), the performance index rates of a nominal preview and an
optimal preview controller are plotted with respect to the vehicle speed, v. As
pointed out in the previous section, vehicle speed affects both control and
estimation schemes in terms of Np and W(k), respectively. The difference between
actual and nominal values of vehicle speed will lead to performance deterioration
of preview control. In the figure the performance index rate of the nominal preview
control deteriorates from that of the optimal control as the vehicle speed deviates
from its nominal value, 15 m/s. The sudden increase in the performance index rate
of the nominal preview control occurs when the preview step Np varies from one
value to another with the vehicle speed. Compared with this, performance
degradation by inaccurate W(k) is negligible. Therefore one concludes that when

Figure 3. Optimal J'inf for a varying covariance of a preview sensor noise. Key: —q—, output
feedback preview; —w—, LQG.
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Figure 4. (a) J'inf and (b) NP for varying vehicle speed, v. Key: —w—, LQG control; —q—,
nominal preview control; —r—, optimal preview control.

the velocity information is not exact, the vehicle will experience performance
deterioration mainly due to inaccurate estimation of the preview step.

One also observes that the preview controller designed for the vehicle speed of
15 m/s can be used for the speeds ranging from 14 m/s–17 m/s without severe
performance deterioration. A set of speeds may be selected so that the preview
controllers based on these speeds can be used over the whole speed range. It will
greatly reduce computational burden required to modify control and estimation
schemes continuously for varying speed.

5. CONCLUSIONS

In this paper, the solution of the stochastic optimal, output feedback, preview
regulator problem for active vehicle suspension control has been derived. By
augmenting the dynamics of the original system and the previewed road inputs,
the problem is shown to be equivalent to the classical linear quadratic Gaussian
problem. The LQG solution of the augmented system can be written in the
conventional preview compensator form with feedback and feedforward parts. It
was found based on the structure of the proposed compensator that as the
covariance of the preview sensor noise increases, the preview sensor signal is less
trusted in the road input estimation while the remaining measurement signals are
more trusted in the state estimation. The sensitivity of the control and estimation
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scheme with respect to speed variation was also investigated through numerical
simulations of a quarter car model. It was shown that miscalculation of the preview
step due to the inaccurate vehicle velocity information could be the major source
of performance degradation of the preview control, while the miscalculated
estimator gain due to it has minimal effect on the performance.
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APPENDICES

A. Theorem 1
The optimal solution of the LQG problem is the same as the solution to the

linear quadratic regulator(LQR) problem except that in the control law the state
xa (k) is replaced with its estimate x̂a (k). The optimal input, u*(k) is given by

u*(k)=−Kc (k)x̂a (k); ke 0, (A.1)

where Kc is the gain matrix for the optimal regulator such as

Kc (k)= [R+HT
a Pc (k+1)Ha ]−1{HT

a Pc (k+1)Ga +MT
a }, (A.2)

and matrix Pc (k) satisfies the discrete Riccati equation

Pc (k)=G
 T
a Pc (k+1)G
 a +Q
 a

− G
 T
a Pc (k+1)Ha [R+HT

a Pc (k+1)Ha ]−1HT
a Pc (k+1)G
 a , (A.3)
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with initial condition Pc (n)=Sa (n) and G
 a =Ga −HaR−1MT
a ,

Q
 a =Qa −MaR−1 MT
a . x̂a (k) is the conditional mean of xa (k) given ya ( j),

0E jE k; x̂a (k) can be obtained as the output of the optimal estimator described
as

x̂a (k+1)=Ga x̂a (k)+Hau(k)+Ke (k){ya (k)− ŷa (k)},

ŷa (k)=Ca x̂a (k)+Dau(k). (A.4)

The optimal estimator gain Ke (k)

Ke (k)=GaPe (k)CT
a [CaPe (k)CT

a +Ja (k)]−1, (A.5)

is obtained from the discrete Riccati equation,

Pe (k+1)=GaPe (k)GT
a +Wa (k)

− GaPe (k)CT
a [CaPe (k)CT

a +Ja (k)]−1CaPe (k)GT
a , (A.6)

with the initial condition Pe (0)= (Pa )0. The minimal performance index achievable
with the optimal control input (A.1) is given as

min
u

E[J]= (x̄a )T
0Pc (0)(x̄a )0 + tr[Pc (0)Pe (0)]+ s

n−1

i=0

tr[Pc (i+1)Wa ]

+ s
n−1

i=0

tr[Pe (i)KT
c (i)[HT

a Pc (i+1)Ha +R]Kc (i)]. (A.7)

B. Proof of corollary 1
If one assumes that the solution to Riccati equation (A.3) takes the following

form,

(Pc )xx (k) (Pc )xw0(k) · · · (Pc )xwNp
(k)

(Pc )T
xw0

(k) (Pc )w0w0(k) · · · (Pc )w0wNp
(k)

G
G

G

K

k

G
G

G

L

l

Pc (k)= ···
···

· · ·
···

, (A.8)

(Pc )T
xwNp

(k) (Pc )T
w0wNp

(k) · · · (Pc )wNpwNp
(k)

then the optimal input (A.1) can be rewritten as:

u(k)=−{R+HT(Pc )xx (k+1)H}−1 ×${HT(Pc )xx (k+1)G+MT
x}x̂(k)

+ {HT(Pc )xx (k+1)F+MT
w}ŵ(k)+HT s

Np

j=1

(Pc )xwj−1(k+1)ŵ(k+ j)%.
(A.9)
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Substituting (20) and (A.8) into equation (A.3), one can easily prove that subblocks
(Pc )xx (k) and (Pc )xwj (k) ( j=1, . . . , Np −1) of Pc (k) satisfy the following recursive
equations:

(Pc )xx (k)=G
 T(Pc )xx (k+1)G
 +Q
 xx

−G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)H}−1HT(Pc )xx (k+1)G
 ,

(A.10)

(Pc )xw0(k)=G
 T(Pc )xx (k+1)F
 +Q
 xw

−G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)H}−1HT(Pc )xx (k+1)F
 ,

(A.11)

(Pc )xwj (k)= [G
 T −G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)H}−1HT]

× (Pc )xwj−1(k+1). (A.12)

Using the equations given above, the summation in equation (A.9) can be written

s
Np

j=1

(Pc )xwj−1(k+1)ŵ(k+ j)= (Pc )xw0(k+1)ŵ(k+1)

+ s
Np

j=2

t
j

i=2

[G
 T −G
 T(Pc )xx (k+ i)H{R+HT

× (Pc )xx(k+ i)H}−1HT](Pc )xw0(k+ j)ŵ(k+ j).

(A.13)

If one defines r̂(k) as the vector satisfying the following recursive equation

r̂(k)= [G
 T −G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)}−1HT]r̂(k+1)

+ (Pc )xw0(k+1)ŵ(k)

= [G
 T −G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)}−1HT]r̂(k+1)

+ [G
 T(Pc )xx (k+1)F
 +Q
 xw

− G
 T(Pc )xx (k+1)H{R+HT(Pc )xx (k+1)}−1HT

×(Pc )xx(k+1)F
 ]ŵ(k), (A.14)

with an initial condition r̂(k+Np +1)= 0, the summation can be replaced with
the single vector r̂(k+1). This completes the proof of the controller part in the
corollary.
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In the meantime, if one assumes the similar block elements for the Riccati
solution for the estimation Pe (k) and substitute this into (A.6), one can easily show
that the Riccati solution reduces to the following block diagonal matrix:

(Pe )xx (k) 0 · · · 0

0 (Pe )w0w0(k) · · · 0
G
G

G

K

k

G
G

G

L

l

Pe (k)= ···
···

· · ·
···

. (A.15)

0 0 · · · (Pe )wNpwNp
(k)

Using this, the optimal estimator gain can be written as

G(Pe )xx (k)CT{C(Pe )xx (k)CT +J(k)}−1

···G
G

G

K

k

Ke (k)=
0

0

0
··· G

G

G

L

l
W(k){W(k)+Jw (k)}−1 . (A.16)

0

Substituting this into the estimator dynamics in (A.4) produces

x̂(k+1)=Gx̂(k)+Hu(k)+Fŵ0(k)+G(Pe )xx (k)CT[C(Pe )xx (k)CT +J]−1

× (y(k)−Cx̂(k)−Du(k))

ŵ0(k+1= ŵ1(k),
··· = ···

ŵNp −1(k+1)= W[W+Jw ]−1yw (k),

ŵNp (k+1)=0. (A.17)

Using notation in (18), one can obtain the estimator given in (28) and (29) and
this completes the proof.
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